GMG Graphene Aluminium-Ion Battery: Progress Update and Next Steps Toward Commercialisation.
Graphene Manufacturing Group Ltd. (TSXV: GMG) (“GMG” or the “Company“) is pleased to provide the latest progress update on its Graphene Aluminium-Ion Battery technology (“G+AI Battery“) being developed by GMG and the University of Queensland (“UQ“).
Notably, this update includes information about GMG’s G+AI Battery regarding:
- Electrochemistry Optimisation
- 1000 mAh Battery Cell Capacity Reached (Previously)
- Battery Technology Readiness Level
- Next Steps Toward Commercialisation and Market Applications
- Next Generation Battery Performance
- Important Milestones for GMG’s Graphene Aluminium Ion Battery Development
Electrochemistry Optimisation
The Company is currently optimising the G+AI Battery pouch cell electrochemistry – which is a standard battery development process step (please see Battery Technology Readiness Level section below).
The Company has developed significant knowledge regarding the electrochemistry of the pouch cells since achieving the targeted 1 Ah cell capacity in February 2024.
The challenges that the G+AI Battery are showing through this phase of its maturation are very similar to other battery chemistries that have been developed into mass production – including Lithium-Ion batteries.
The performance of the pouch cells will be communicated upon successfully producing a repeatable and 3rd party tested 1000 mAh+ battery pouch cell.
The Company is confident it can meet its overall timeline on the battery cell roadmap as seen in Figure 1 as previously communicated.
- Make Cell
The major components of the G+AI Battery are:
Cathode: Graphene, binder and solvent (water or another solution) layered on a metal foil cathode substrate.
Anode: Aluminium foil
Electrolyte: Aluminium Chloride and ionic fluid (Urea or another solution)
Separator: Separator
These are assembled in a standard step by step process – which is documented in the Company’s operation manual of procedures for the Battery Development Process.
There are many different variations that can be trialed in a cell design which can include, but are not limited to, the following:
– Processing of the graphene
– Type of Cathode Solvent
– Type of Cathode Binder
– Cathode thickness
– Various Ionic Fluids in the Electrolyte
– Various mixes of Electrolyte components
– Types of Separators (different materials, suppliers and thicknesses)
– Various Cathode preparation variations
– Various Cell Assembly process variations
– Charging and Discharging algorithms (including charging voltage, current and time)
– Formation Processes
Typically, 5 of each battery design is made which ensures a statistical depth to the testing.
- Test Cell Performance
Once the Cell Performance is measured (on the charging/discharging stacks) there are certain performance parameters that are observed which include, but are not limited to, the following:
– Capacity (mAh)
– Nominal Voltage (Volts)
– Number of Charging and Discharging Cycles (number)
– Physical expansion or contraction of the cell
– Physical changes to the cell
This data is then recorded and linked to the cell design and assembly process used to make the cell.
- Compare Cell Performance
The objective of this step is to understand what design and cell assembly parameters, in an isolated test, have a repeatable causal change in cell performance.
Each Sprint usually focuses on a single variable in design or cell assembly – an example of a 3-week Sprint program is seen in Figure 3.
- Review Optimisation Options
Upon reviewing optimisation options for the next Sprint, there are many parameters to consider. Often one design parameter of the cell or assembly process will positively improve one cell performance outcome but have a negative impact on another. As the Company optimises various performance outcomes of the battery cell – some of which are shown in Figure 4 – the Company needs to consider the various potential trade-offs on other performance outcomes.
- Propose Next Cell Design (repeat Step 1 again)
Once the Company has selected the design of the Cell parameters, it needs to test for optimisation. This involves repeating step 1 until a final design or variable is chosen.
1000 mAh Battery Cell Capacity Reached
The Company previously announced on the 6th February 2024 it produced multiple battery pouch cells with over 1000 mAh (1 Ah) capacity, as seen in Figure 5. This was a major milestone achieved to demonstrate scalability from coin cells to pouch cells, and represented the next milestone in the battery’s development, following the announcement of 500 mAh capacity in September 2023.
Please see typical charging and discharging curve of the GMG’s Graphene Aluminium-Ion Battery 1000 mAh cell in Figure 6 showing a nominal voltage of 1.7 volts.
At the same time, GMG is reviewing a potential investment for the procurement and installation of an automated pouch cell battery pilot plant in its Richlands Australia Facility. The Pilot Plant will enable the Company to produce pouch cells for potential customers to test in battery packs for different applications. Following the successful start-up of the Pilot Plant and successful customer trials, GMG expects to pursue large scale commercial production, as seen in Figure 7.
Battery Technology Readiness Level
The battery technology readiness level (“BTRL”) of the Graphene Aluminium-Ion technology remains at Level 4 (see Figure 8). GMG is currently optimizing electrochemical behaviour for pouch cells via ongoing laboratory experimentation. If GMG invests, constructs and commissions a Pilot Plant it is anticipated that the battery technology will progress to BTRL 7 and 8 since the equipment and process needed to make the Graphene Aluminium-Ion batteries is the same as those employed to make Lithium Ion Batteries.
Next Steps Toward Commercialisation & Market Applications
The Company continues to see a broad range of applications for a completed GMG Graphene Aluminium Ion Battery – utilising its ultra-high power-density and nominal energy density characteristics. Along with Rio Tinto, a range of global companies have confidentially expressed their interest in working with GMG in the following vertical sectors:
Next Generation Battery Performance
GMG’s next generation Graphene Aluminium-Ion Battery performance data (as tested and calculated on coin cells), as compared to the most commonly available lithium-ion batteries, is shown below in Figure 9, with a list of its beneficial characteristics.
The performance of the pouch cells will be communicated upon successfully producing a repeatable and fully 3rd party tested 1000 mAh+ battery pouch cell.
READ the latest Batteries News shaping the battery market
GMG Graphene Aluminium-Ion Battery: Progress Update and Next Steps Toward Commercialisation. source